Vol. 80 No. 5 (2021)
RUBBERS (CAOUTCHOUC)

MECHANODESTRUCTION OF ISOPRENE RUBBER. PART 3. KINETICS OF OXIDATIVE DESTRUCTION

V. Dorozhkin
Nizhnekamsk Institute of chemical technology (branch) of the Federal state budgetary educational institution of higher education «Kazan national research technological University»
Ye. Mokhnatkina
Nizhnekamsk Institute of chemical technology (branch) of the Federal state budgetary educational institution of higher education «Kazan national research technological University»
D. Zemskiy
Nizhnekamsk Institute of chemical technology (branch) of the Federal state budgetary educational institution of higher education «Kazan national research technological University»
A. Valiev
Nizhnekamsk Institute of chemical technology (branch) of the Federal state budgetary educational institution of higher education «Kazan national research technological University»

Published 2021-10-20

Keywords

  • isoprene rubber,
  • oxidative destruction,
  • kinetics of the process,
  • activation energy,
  • molecular weight,
  • oxygen diffusion
  • ...More
    Less

How to Cite

[1]
Dorozhkin В., Mokhnatkina Е., Zemskiy Д. and Valiev А. 2021. MECHANODESTRUCTION OF ISOPRENE RUBBER. PART 3. KINETICS OF OXIDATIVE DESTRUCTION. Kauchuk i Rezina. 80, 5 (Oct. 2021), 230–234. DOI:https://doi.org/10.47664/0022-9466-2021-80-5-230-234.

Abstract

Continuation of studies of changes in molecular parameters, in particular, the molecular weight (MM) during the plasticization (P) of SKI-3 isoprene rubber. The kinetics of oxidative destruction (OD) in the temperature range (T) 30-130 °C and time (t) 30–600 s were studied in detail. Plasticization of rubber, as before, was carried out in a laboratory rubber mixer of the company «NFM», and gel chromatographic studies were carried out on a gel chromatograph of the company «Waters». The speed constant OD K0 decreases in absolute value with a decrease in T and an increase in t. The calculated effective activation energy of OD Eeff decreases from 24,4 to 13 kJ/mol in the studied t range. The influence of the oxygen diffusion process on the kinetic features of the OD of SKI-3 at Р is pointed out.

References

  1. Дорожкин В.П., Мохнаткина Е.Г., Земский Д.Н., Валиев А.Д. Механодеструкция изопренового каучука. Сообщение 2. Кинетика механокрекинга // Каучук и резина. 2021. Т.80. №4. С. 180.
  2. Дорожкин В.П., Мохнаткина Е.Г., Земский Д.Н., Валиев А.Д. Механодеструкция изопренового каучука. Сообщение 1. Кинетика процесса // Каучук и резина. 2021. Т.80. №3. С. 118.
  3. Дорожкин В.П., Мохнаткина Е.Г., Земский Д.Н. и др. Влияние пластикации изопренового каучука на его молекулярные характеристики. Часть 1. // Каучук и резина. 2020. Т.79. №2. С.62.
  4. Барамбойм Н.К. Механохимия высокомолекулярных соединений. М.:Химия, 1978. -384 с.
  5. Кузьминский А.С., Лежнев Н.Н., Зуев Ю.С. Окисление каучуков и резин. М.: Госхимиздат, 1957. -320 с.
  6. Дорожкин В.П., Мохнаткина Е.Г., Земский Д.Н. и др. Влияние пластикации изопренового каучука на его молекулярные характеристики. Часть 2. // Каучук и резина. 2020. Т.79. №3. С.124.
  7. Шанин Л.Л. // Докл. АН СССР. 1954. Т.99. С.1053.
  8. Nakajima N., Harrell E.R. Method of Obtaining Viscosity Curves with Mooney Rheometer // Rubber Chem.Technol. 1979. V.52. P.9.
  9. Ameronger G. The Permeability of Different Rubbers to Gases and Its Relation to Diffusivity and Solubility// J.Appl.Phys. 1946. V.17. P.972.
  10. Carpenter A. Absorption of Oxygen by Rubbers // Ind. Eng. Chem. 1947. V.39. P.187.