REVIEW
Published 2022-03-15
Keywords
- polylactide,
- polylactic acid,
- biopolymers,
- natural and synthetic isoprene rubber,
- butadiene rubber
- ethylene propylene diene rubbers,
- butadiene-acrylonitrile rubbers,
- urethane rubbers,
- polyethylene-vinyl acetate,
- nanoclays,
- lignin,
- wood flour,
- mechanical properties,
- biodegradation,
- simulators of biodegradation,
- world market ...More
How to Cite
[1]
Sirazetdinov А. , Nikiforov А. and Volfson С. 2022. Polymer Composites Based on Polylactide . Kauchuk i Rezina. 80, 6 (Mar. 2022), 326–336. DOI:https://doi.org/10.47664/0022-9466-2021-80-6-326-336.
Abstract
Review of literature data devoted to obtaining and properties of composites based on polylactide with many rubbers and other polymers.
References
- Geyer R., Jambeckand J.R., Law K.L. Production, use and fate of all plastics ever made // Science advances. 2017. V.3. N 7. P.1.
- Ковалева В.В. Биополимеры и их роль в решении экологических проблем // Сб. тез. докл. XIII студ. научно-практич. конф. "Наука - шаг в будущее". (Минск, 2019 г.). С.28.
- Jem K.J., Tan B. The development and challenges of poly (lactic acid) and poly (glycolic acid) // Advanced Industrial and Engineering Polymer Research. 2020. V. 3. N 2. P.60.
- Ma H., Pu S., Liu S. Microplastics in aquatic environments: Toxicity to trigger ecological consequences // Environmental Pollution. 2020. V. 261. 114089.
- Guo J.-J., Huang X.-P., Xiang L. Source, migration and toxicology of microplastics in soil // Environment International. 2020. V. 137. 105263.
- Shen M., Huang W., Chen M. (Micro) plastic crisis: Un-ignorable contribution to global greenhouse gas emissions and climate change // Journal of Cleaner Production. 2020. V. 254. 120138.
- Биоразлагаемые полимерные смеси и композиты из возобновляемых источников / Под ред. Лонг Ю.П. 2013. – 464 с.
- Jamshidian M., Tehrany E.A., Imran M. Poly-lactic acid: production, applications, nanocomposites, and release studies // Comprehensive reviews in food science and food safety. 2010. V.9. N5. P.552.
- Волова Т.Г. Современные биоматериалы: мировые тренды, место и роль микробных полигидроксиалканоатов //
- Журнал Сибирского федерального университета. Биология. 2014. T. 7. № 2. С.103.
- https://studwood.ru/2038010/matematika_himiya_fizika/analiz_mirovogo_rynka_biopolimerov_obzor_prognozy
- http://www.polymery.ru/letter.php?n_id=986&cat_id=3
- http://www.hycail.fi/biopolymer.html
- http://tcj.ru/wpcontent/uploads/2013/12/2012_3_48-54_conjuctura.pdf
- http://newchemistry.ru/letter.php?n_id=8583
- http://earchive.tpu.ru/bitstream/11683/29487/1/TPU191079.pdf
- http://abercade.ru/research/industrynews/7401.html
- https://www.alibaba.com/product-detail/100-Biodegradable-pla-pelletmade from_60256614490.html?spm=a2700.7724838.2017115.11.634d6440LGFUtN
- Галимзянова Р.Ю., Пестерникова Н.Н., Хисамиева Д.Р. Обзор рынка полимолочной кислоты // Профессионал года 2018. 2018. C.22.
- Роговина С.З., Алексанян К.В., Владимиров Л.В.
- Биоразлагаемые полимерные материалы
- на основе полилактида // Химическая физика. 2019. T. 38. № 9. C.39.
- Kale G., Auras R., Singh S.P., Narayan R. Biodegradability of polylactide bottles in real and simulated composting conditions // Polymer testing. 2007. V.26. N 8. P.1049.
- Wu C.-S. Renewable resource-based green composites of surface-treated spent coffee grounds and polylactide: Characterisation and biodegradability // Polymer Degradation and Stability. 2015. V.121. P.51.
- Ray S.S., Yamada K., Okamoto M. New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology // Polymer. 2003. V.44. N 3. P.857.
- Ayutthaya W.D.N., Poompradub S. Thermal and mechanical properties of poly (lactic acid)/natural rubber blend using epoxidized natural rubber and poly (methyl methacrylate)
- as co-compatibilizers // Macromolecular Research.
- V.22. N 7. P. 686.
- Mohammad N.N.B., Arsad A., Rahmat A.R. Influence
- of compatibilizer on mechanical properties of polylactic acid/natural rubber blends // Applied Mechanics and Materials. 2014. V.554. P.81.
- Pongtanayut K., Thongpin C., Santawitee O.
- The effect of rubber on morphology, thermal properties
- and mechanical properties of PLA/NR and PLA/ENR blends // Energy Procedia. 2013. V. 34. P.888.
- Chen Y., Yuan D., Xu C. Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase // ACS applied materials & interfaces. 2014. V.6. N 6. P.3811.
- Бурков А.А., Соколов Д.С., Фомин С.В. Структура композиций на основе полилактида и натурального каучука //
- Нефтехимия-2018. 2018. C.176.
- Yuan D., Chen Z., Xu C. Fully biobased shape memory
- material based on novel cocontinuous structure in poly
- (lactic acid)/natural rubber TPVs fabricated via peroxide-induced dynamic vulcanization and in situ interfacial compatibilization // ACS Sustainable Chemistry & Engineering. 2015. V.3. N 11. P.2856.
- Chumeka W., Pasetto P., Pilard J.-F. Bio-based triblock copolymers from natural rubber and poly (lactic acid): Synthesis and application in polymer blending // Polymer. 2014. V.55. N17. P.4478.
- Pattamaprom C., Chareonsalung W., Teerawattananon C. Improvement in impact resistance of polylactic acid by masticated and compatibilized natural rubber // Iranian Polymer Journal. V.25. N2. P.169.
- Bitinis N., Fortunati E., Verdejo R. Poly (lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites.
- Part II: Properties evaluation // Carbohydrate polymers. 2013. V.96. N2. P.621.
- Sennan P., Pumchusak J. Improvement of mechanical properties of poly (lactic acid) by elastomer // The Malaysian Journal
- of Analytical Sciences. 2014. V.18. N3. P. 669.
- Maroufkhani M., Katbab A., Liu W. Polylactide (PLA) and acrylonitrile butadiene rubber (NBR) blends: the effect
- of ACN content on morphology, compatibility and mechanical properties // Polymer. 2017. V.115. P.37.
- Talbamrung T., Kasemsook C., Sangtean W. Effect of peroxide and organoclay on thermal and mechanical properties of PLA in PLA/NBR melted blend // Energy Procedia. 2016. V.89. P.274.
- Jin H.-J., Chin I.-J., Kim M.-N. Blending of poly (L-lactic acid) with poly (cis-1, 4-isoprene) // European polymer journal. 2000. V.36. N1. P.165.
- Zeng J.-B., Li Y.-D., He Y.-S. Improving flexibility of poly (L-lactide) by blending with poly (L-lactic acid) based poly (ester-urethane): morphology, mechanical properties, and crystallization behaviors // Industrial & engineering chemistry research. 2011. V.50. N10. P.6124.
- Han J.J., Huang H.X. Preparation and characterization of biodegradable polylactide/thermoplastic polyurethane elastomer blends // Journal of Applied Polymer Science. 2011. V.120. N 6. P.3217.
- Li Y., Shimizu H. Toughening of polylactide by melt blending with a biodegradable poly (ether) urethane elastomer // Macromolecular bioscience. 2007. V.7. N7. P.921.
- Zhang W., Chen L., Zhang Y. Surprising shape-memory effect
- of polylactide resulted from toughening by polyamide elastomer // Polymer. 2009. V.50. N5. P.1311.
- Yoon J.-S., Oh S.-H., Kim M.-N. Thermal and mechanical properties of poly (l-lactic acid)–poly (ethylene-co-vinyl acetate) blends // Polymer. 1999. V.40. N9. P.2303.
- Ma P., Hristova-Bogaerds D., Goossens J. Toughening of poly (lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents // European Polymer Journal. 2012. V.48. N1. P.146.
- Wang S., Pang S., Pan L. Compatibilization of poly (lactic acid)/ethylene‐propylene‐diene rubber blends by using organic montmorillonite as a compatibilizer // Journal of Applied Polymer Science. 2016. V.133. N 46. 44192.
- Ветошина К.А. Нанокомпозиты на основе полилактида // Молодежь в науке: Новые аргументы. 2020. С.72.
- Doherty W.O., Mousavioun P., Fellows C.M. Value-adding to cellulosic ethanol: Lignin polymers // Industrial crops and products. 2011. V.33. N2. P.259.
- Spiridon I., Leluk K., Resmerita A.M. Evaluation of PLA–lignin bioplastics properties before and after accelerated weathering // Composites Part B: Engineering. 2015. V.69. P.342.
- Birley A.W., Haworth B., Batchelor J. Physics of plastics: processing, properties and materials engineering. N.-Y.: Hanser Verlag, 1992. – 530 p.
- Isitman N.A., Dogan M., Bayramli E., Kaynak C. The role of nanoparticle geometry in flame retardancy of polylactide nanocomposites containing aluminium phosphinate // Polymer degradation and stability. 2012. V. 97. N8. P.1285.
- Chivrac F., Pollet E., Averous L. Progress in nano-biocomposites based on polysaccharides and nanoclays // Materials Science and Engineering: R: Reports. 2009. V. 67. N 1. P.1.
- Lisuzzo L., Cavallaro G., Milioto S. Effects of halloysite content on the thermo-mechanical performances of composite bioplastics // Applied Clay Science. 2020. V.185. 105416.
- Торопков Н.Е. Исследование композитов на основе гидроксиапатита и полилактида // Труды XXIV Межд. симпоз. "Проблемы геологии и освоения недр". (Томск, 2020 г.). T. 2. C.378.
- Petrovskaya T.S., Vereschagin V.I. Effectiveness of the technologies of titanium implants covering // Key Engineering Materials. 2016. V.670. P.183.
- Талипова Г.А., Галяветдинов Н.Р. Разработка биоразлагаемых композиционных материалов из полимера и растительного наполнителя // Актуальные проблемы биологии и экологии. 2019. C.235.
- Илалова А.Ф., Талипова Г.А., Илалова Г.Ф. Экспериментальные исследования биоразлагаемых свойств древесно-наполненных композиционных материалов // World scientific discoveries-2019. 2019. C.78.
- Галяветдинов Н.Р., Талипова Г.А., Саерова К.В. Исследования биоразлагаемых композитов из PLA с наполнителем // Cовременные материалы, техника и технология. 2018. C.109.
- Мишкин С.И., Тихонов Н.Н., Осипчик В.С. Модификация полимолочной кислоты наноразмерными структурами // Пластические массы. 2013. № 11. C.59.
- https://www.plastics.ru/index.php?lang=ru&view=news&category_id=15&entry_id=21844