Том 80 № 6 (2021)
ОБЗОРЫ

Полимерные композиционные материалы на основе полилактида

А.В. Сиразетдинов
ФГБОУ ВО «Казанский национальный исследовательский технологический университет»
Bio
А.А. Никифоров
ФГБОУ ВО «Казанский национальный исследовательский технологический университет»
Bio
С.И. Вольфсон
ФГБОУ ВО «Казанский национальный исследовательский технологический университет»
Bio

Дата публикации 15.03.2022

Ключевые слова

  • полилактид,
  • полимолочная кислота,
  • биополимеры,
  • натуральный и синтетический изопреновые каучуки,
  • бутадиеновый каучук,
  • бутадиен-нитрильный каучук,
  • уретановый каучук,
  • этилен-пропилен-диеновый каучук,
  • сополимер этилена и винилацетата,
  • наноглина,
  • лигнин,
  • древесная мука,
  • компатибилизаторы,
  • физико-механические свойства,
  • ударная вязкость,
  • биоразлагаемость,
  • симуляторы биоразложения,
  • мировой рынок
  • ...Показать
    Скрыть

Как цитировать

[1]
Сиразетдинов , А. , Никифоров, А. и Вольфсон, С. 2022. Полимерные композиционные материалы на основе полилактида. Журнал «Каучук и резина». 80, 6 (мар. 2022), 326–336. DOI:https://doi.org/10.47664/0022-9466-2021-80-6-326-336.

Аннотация

Обзор литературных данных по получению и свойствам композитов на основе полилактида с широким кругом каучуков и дисперсными наполнителями.

Библиографические ссылки

  1. Geyer R., Jambeckand J.R., Law K.L. Production, use and fate of all plastics ever made // Science advances. 2017. V.3. N 7. P.1.
  2. Ковалева В.В. Биополимеры и их роль в решении экологических проблем // Сб. тез. докл. XIII студ. научно-практич. конф. "Наука - шаг в будущее". (Минск, 2019 г.). С.28.
  3. Jem K.J., Tan B. The development and challenges of poly (lactic acid) and poly (glycolic acid) // Advanced Industrial and Engineering Polymer Research. 2020. V. 3. N 2. P.60.
  4. Ma H., Pu S., Liu S. Microplastics in aquatic environments: Toxicity to trigger ecological consequences // Environmental Pollution. 2020. V. 261. 114089.
  5. Guo J.-J., Huang X.-P., Xiang L. Source, migration and toxicology of microplastics in soil // Environment International. 2020. V. 137. 105263.
  6. Shen M., Huang W., Chen M. (Micro) plastic crisis: Un-ignorable contribution to global greenhouse gas emissions and climate change // Journal of Cleaner Production. 2020. V. 254. 120138.
  7. Биоразлагаемые полимерные смеси и композиты из возобновляемых источников / Под ред. Лонг Ю.П. 2013. – 464 с.
  8. Jamshidian M., Tehrany E.A., Imran M. Poly-lactic acid: production, applications, nanocomposites, and release studies // Comprehensive reviews in food science and food safety. 2010. V.9. N5. P.552.
  9. Волова Т.Г. Современные биоматериалы: мировые тренды, место и роль микробных полигидроксиалканоатов //
  10. Журнал Сибирского федерального университета. Биология. 2014. T. 7. № 2. С.103.
  11. https://studwood.ru/2038010/matematika_himiya_fizika/analiz_mirovogo_rynka_biopolimerov_obzor_prognozy
  12. http://www.polymery.ru/letter.php?n_id=986&cat_id=3
  13. http://www.hycail.fi/biopolymer.html
  14. http://tcj.ru/wpcontent/uploads/2013/12/2012_3_48-54_conjuctura.pdf
  15. http://newchemistry.ru/letter.php?n_id=8583
  16. http://earchive.tpu.ru/bitstream/11683/29487/1/TPU191079.pdf
  17. http://abercade.ru/research/industrynews/7401.html
  18. https://www.alibaba.com/product-detail/100-Biodegradable-pla-pelletmade from_60256614490.html?spm=a2700.7724838.2017115.11.634d6440LGFUtN
  19. Галимзянова Р.Ю., Пестерникова Н.Н., Хисамиева Д.Р. Обзор рынка полимолочной кислоты // Профессионал года 2018. 2018. C.22.
  20. Роговина С.З., Алексанян К.В., Владимиров Л.В.
  21. Биоразлагаемые полимерные материалы
  22. на основе полилактида // Химическая физика. 2019. T. 38. № 9. C.39.
  23. Kale G., Auras R., Singh S.P., Narayan R. Biodegradability of polylactide bottles in real and simulated composting conditions // Polymer testing. 2007. V.26. N 8. P.1049.
  24. Wu C.-S. Renewable resource-based green composites of surface-treated spent coffee grounds and polylactide: Characterisation and biodegradability // Polymer Degradation and Stability. 2015. V.121. P.51.
  25. Ray S.S., Yamada K., Okamoto M. New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology // Polymer. 2003. V.44. N 3. P.857.
  26. Ayutthaya W.D.N., Poompradub S. Thermal and mechanical properties of poly (lactic acid)/natural rubber blend using epoxidized natural rubber and poly (methyl methacrylate)
  27. as co-compatibilizers // Macromolecular Research.
  28. V.22. N 7. P. 686.
  29. Mohammad N.N.B., Arsad A., Rahmat A.R. Influence
  30. of compatibilizer on mechanical properties of polylactic acid/natural rubber blends // Applied Mechanics and Materials. 2014. V.554. P.81.
  31. Pongtanayut K., Thongpin C., Santawitee O.
  32. The effect of rubber on morphology, thermal properties
  33. and mechanical properties of PLA/NR and PLA/ENR blends // Energy Procedia. 2013. V. 34. P.888.
  34. Chen Y., Yuan D., Xu C. Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase // ACS applied materials & interfaces. 2014. V.6. N 6. P.3811.
  35. Бурков А.А., Соколов Д.С., Фомин С.В. Структура композиций на основе полилактида и натурального каучука //
  36. Нефтехимия-2018. 2018. C.176.
  37. Yuan D., Chen Z., Xu C. Fully biobased shape memory
  38. material based on novel cocontinuous structure in poly
  39. (lactic acid)/natural rubber TPVs fabricated via peroxide-induced dynamic vulcanization and in situ interfacial compatibilization // ACS Sustainable Chemistry & Engineering. 2015. V.3. N 11. P.2856.
  40. Chumeka W., Pasetto P., Pilard J.-F. Bio-based triblock copolymers from natural rubber and poly (lactic acid): Synthesis and application in polymer blending // Polymer. 2014. V.55. N17. P.4478.
  41. Pattamaprom C., Chareonsalung W., Teerawattananon C. Improvement in impact resistance of polylactic acid by masticated and compatibilized natural rubber // Iranian Polymer Journal. V.25. N2. P.169.
  42. Bitinis N., Fortunati E., Verdejo R. Poly (lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites.
  43. Part II: Properties evaluation // Carbohydrate polymers. 2013. V.96. N2. P.621.
  44. Sennan P., Pumchusak J. Improvement of mechanical properties of poly (lactic acid) by elastomer // The Malaysian Journal
  45. of Analytical Sciences. 2014. V.18. N3. P. 669.
  46. Maroufkhani M., Katbab A., Liu W. Polylactide (PLA) and acrylonitrile butadiene rubber (NBR) blends: the effect
  47. of ACN content on morphology, compatibility and mechanical properties // Polymer. 2017. V.115. P.37.
  48. Talbamrung T., Kasemsook C., Sangtean W. Effect of peroxide and organoclay on thermal and mechanical properties of PLA in PLA/NBR melted blend // Energy Procedia. 2016. V.89. P.274.
  49. Jin H.-J., Chin I.-J., Kim M.-N. Blending of poly (L-lactic acid) with poly (cis-1, 4-isoprene) // European polymer journal. 2000. V.36. N1. P.165.
  50. Zeng J.-B., Li Y.-D., He Y.-S. Improving flexibility of poly (L-lactide) by blending with poly (L-lactic acid) based poly (ester-urethane): morphology, mechanical properties, and crystallization behaviors // Industrial & engineering chemistry research. 2011. V.50. N10. P.6124.
  51. Han J.J., Huang H.X. Preparation and characterization of biodegradable polylactide/thermoplastic polyurethane elastomer blends // Journal of Applied Polymer Science. 2011. V.120. N 6. P.3217.
  52. Li Y., Shimizu H. Toughening of polylactide by melt blending with a biodegradable poly (ether) urethane elastomer // Macromolecular bioscience. 2007. V.7. N7. P.921.
  53. Zhang W., Chen L., Zhang Y. Surprising shape-memory effect
  54. of polylactide resulted from toughening by polyamide elastomer // Polymer. 2009. V.50. N5. P.1311.
  55. Yoon J.-S., Oh S.-H., Kim M.-N. Thermal and mechanical properties of poly (l-lactic acid)–poly (ethylene-co-vinyl acetate) blends // Polymer. 1999. V.40. N9. P.2303.
  56. Ma P., Hristova-Bogaerds D., Goossens J. Toughening of poly (lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents // European Polymer Journal. 2012. V.48. N1. P.146.
  57. Wang S., Pang S., Pan L. Compatibilization of poly (lactic acid)/ethylene‐propylene‐diene rubber blends by using organic montmorillonite as a compatibilizer // Journal of Applied Polymer Science. 2016. V.133. N 46. 44192.
  58. Ветошина К.А. Нанокомпозиты на основе полилактида // Молодежь в науке: Новые аргументы. 2020. С.72.
  59. Doherty W.O., Mousavioun P., Fellows C.M. Value-adding to cellulosic ethanol: Lignin polymers // Industrial crops and products. 2011. V.33. N2. P.259.
  60. Spiridon I., Leluk K., Resmerita A.M. Evaluation of PLA–lignin bioplastics properties before and after accelerated weathering // Composites Part B: Engineering. 2015. V.69. P.342.
  61. Birley A.W., Haworth B., Batchelor J. Physics of plastics: processing, properties and materials engineering. N.-Y.: Hanser Verlag, 1992. – 530 p.
  62. Isitman N.A., Dogan M., Bayramli E., Kaynak C. The role of nanoparticle geometry in flame retardancy of polylactide nanocomposites containing aluminium phosphinate // Polymer degradation and stability. 2012. V. 97. N8. P.1285.
  63. Chivrac F., Pollet E., Averous L. Progress in nano-biocomposites based on polysaccharides and nanoclays // Materials Science and Engineering: R: Reports. 2009. V. 67. N 1. P.1.
  64. Lisuzzo L., Cavallaro G., Milioto S. Effects of halloysite content on the thermo-mechanical performances of composite bioplastics // Applied Clay Science. 2020. V.185. 105416.
  65. Торопков Н.Е. Исследование композитов на основе гидроксиапатита и полилактида // Труды XXIV Межд. симпоз. "Проблемы геологии и освоения недр". (Томск, 2020 г.). T. 2. C.378.
  66. Petrovskaya T.S., Vereschagin V.I. Effectiveness of the technologies of titanium implants covering // Key Engineering Materials. 2016. V.670. P.183.
  67. Талипова Г.А., Галяветдинов Н.Р. Разработка биоразлагаемых композиционных материалов из полимера и растительного наполнителя // Актуальные проблемы биологии и экологии. 2019. C.235.
  68. Илалова А.Ф., Талипова Г.А., Илалова Г.Ф. Экспериментальные исследования биоразлагаемых свойств древесно-наполненных композиционных материалов // World scientific discoveries-2019. 2019. C.78.
  69. Галяветдинов Н.Р., Талипова Г.А., Саерова К.В. Исследования биоразлагаемых композитов из PLA с наполнителем // Cовременные материалы, техника и технология. 2018. C.109.
  70. Мишкин С.И., Тихонов Н.Н., Осипчик В.С. Модификация полимолочной кислоты наноразмерными структурами // Пластические массы. 2013. № 11. C.59.
  71. https://www.plastics.ru/index.php?lang=ru&view=news&category_id=15&entry_id=21844